
Reverse Engineering on 
Windows 

Cyber Skill Level Up UTM



● Shreethaar (0x251e)

● UUM CS Student (Final Year)

● RE:UN10N 

● MCC 2024 Alumni

● Interest: DFIR, RE, OSINT

./whoami



./toc

1. Intro to RE
2. PE file format
3. x86 arch
4. Basic C and ASM
5. Cracking crackmes 



./intro_to_RE
RE is like taking apart a complex puzzle 
to figure out how it works

In CTF, often you are given a binary to 
get the flag

We need to decompile or disassemble 
it, identify what is the binary suppose to 
do. 



./intro_to_RE

Why Do CTF include RE ?

1. Vulnerability research
2. Malware analysis
3. Binary exploitation
4. Forensic 

Benefits of learning RE ?
1. Gain deep understanding of how machines works
2. Relate both low level with OS 
3. Learning ASM and system internals 



./intro_to_RE



● Preprocessing: “Getting the code ready” by handling #include, #define and 
remove comments

● Compilation: “Translate to assembly”, converting code to low-level instructions
● Assembly: “Convert to machine code”, ASM to machine-readable binary, 

output cant be run such as .o file (object file)
● Linking: “Build the final program”, combines .o with the libraries (stdio.h, 

math.h) to produce final executables

./intro_to_RE



./pe_file_format
PE (Portable Executable):
- File format use by Windows for .exe, .dll and drivers
- Based on COFF (Common Object File Format)

Based on PE file format: 
- Able to find entry point, where program execution 
begins
- Understand what imported APIs the program uses
- Locate code, data, and resources 
- Identify if binary is compressed, obfuscated
- Understand how program loads into memory 



./pe_file_format 1. DOS Header
- “MZ” magic hex signature (4D 5A)
- Points the PE header locations 
- Includes DOS stub program

2. PE Header
- PE Signature (50 45 00 00)
- COFF Header, machine type, 

number of section, timestamp 
- Option header include entry point, 

image base, section alignment

3. Section Table: 
- Contains section names, size, 

permission, offsets
- Array describing each section in the 

PE



./pe_file_format PE Sections (common sections):
.text:

- contains executable machine code
- read and executable permission
- primary target to reverse

.data: 
- global and static variable with initial values
- writeable during program execution

.rdata: 
- string and constants which are read-only
- Import Address Table (IAT) 

.bss: 
- uninitialized data, takes up space in memory but not 

in disk



./pe_file_format

#include <stdio.h>

int main() {
printf(“Hello Peeps”);
return 0;

} 





./x86_arch

● x86 architecture is a family of backward compatible instruction set based 
on Intel’s 8086 CPU

● The term “x86” was coined after several successors to the 8086 ended in 
“86” such as 80186, 80286 and etc.

● x86 refer as 32-bit instruction set, x86-64 refer as 64-bit instruction set

Byte = 8 bits (1 byte)
Word = 16 bits (2 bytes) 
Doubleword = 32 bits (4 bytes) 
Quadword = 64 bits (8 bytes) 
Double Quadword = 128 bits (16 bytes)



./x86_arch



./x86_arch
Basic Assembly Instructions:
● MOV - Move data between registers; data between memory and registers; 

immediate value into registers
● PUSH - Push onto the stack
● POP - Pop off the stack
● ADD - Integer add
● SUB - Subtract
● MUL - Multiply
● DIV - Divide 
● INC - Increment
● DEC - Decrement
● CMP - Compare
● AND 
● OR 
● XOR
● NOT

There is a lot more, here is a simple cheatsheet to refer:
https://github.com/7etsuo/x86

https://github.com/7etsuo/x86


./x86_arch



./x86_arch
Memory Addressing:

1. Immediate Addressing: 

mov eax, 0x1234 

Moves value 0x1234 directly into EAX register



Memory Addressing:

2. Register Addressing: 

mov eax, ebx

Copy value from EBX into EAX

./x86_arch



Memory Addressing:

3. Direct (Absolute) Addressing

mov eax, [0x401000]

Moves value at memory address 0x401000 into EAX

./x86_arch



Memory Addressing:

4. Indirect Addressing

mov eax, [ebx]

Moves value from the memory address pointed by EBX into EAX

./x86_arch



./x86_arch
Memory Addressing:

5. Base + Offset Addressing

mov eax, [ebx + 4]

Move the value at EBX + 4 into EAX, used to access structure field or
array elements



./x86_arch
Memory Addressing:

6. Base + Index Addressing

mov eax, [ebx + esi]

Moves the value from the address EBX + ESI into EAX



./x86_arch
Memory Addressing:

7. Base + Index Addressing

mov eax, [ebx + esi*4 + 8]

Moves the value from the address EBX + (ESI x 4) + 8 into EAX
- EBX: base
- ESI: index
- 4: scale (can be 1, 2, 4 or 8)
- 8: offset



Stack operation:

int __cdecl main(int argc, const char **argv, const char **envp)
_main           proc near               

push    ebp
mov     ebp, esp
push    offset aHelloPeeps ; "Hello Peeps"
call    printf 
add     esp, 4
xor     eax, eax
pop     ebp
retn

_main           endp

./x86_arch



Stack operation:

./x86_arch

Before _main starts, 
CRTStartup or previous 
entry point

CRT = C RunTime



Stack operation:

push ebp
Save old EBP on the stack

./x86_arch



mov ebp, esp
Copy ESP to EBP

./x86_arch

With first two instruction, we called it 
prologue

If there is any local variable, you will notice 
a sub esp, X 



push offset aHelloPeeps:
Pushes the pointer to the string “Hello Peeps”

Assume the address of the string is 0x004

./x86_arch



call printf:
Pushes return address from _main
onto the stack

./x86_arch



add esp, 4:
After return from printf, clean up the
stack by adjusting ESP

./x86_arch



./x86_arch

xor eax, eax:
Clears return value at register, 
no changes in stack



./x86_arch

pop ebp:
Restore caller’s base pointer 
Basically undoing push ebp



./x86_arch

ret:
Pops return address and jumps to it



./basic_c_asm
#include <stdio.h>

int global_counter = 10;
static int static_global_value = 5;
int compute_sum(int a, int b);

int main() {
    int local_value = 3;
    static int static_local_value = 7;
    int result = compute_sum(local_value, static_local_value);
    printf("Result: %d\n", result);
    printf("Global Counter: %d\n", global_counter);
    return 0;
}

int compute_sum(int a, int b) {
    int sum = a + b;
    global_counter += sum;
    return sum;
}



./basic_c_asm
#include <stdio.h>

int global_counter = 10;
static int static_global_value = 5;
int compute_sum(int a, int b);

int main() {
    int local_value = 3;
    static int static_local_value = 7;
    int result = compute_sum(local_value, static_local_value);
    printf("Result: %d\n", result);
    printf("Global Counter: %d\n", global_counter);
    return 0;
}

int compute_sum(int a, int b) {
    int sum = a + b;
    global_counter += sum;
    return sum;
}

global variable

static global variable

local variable

static local variable

Function arguments 



./basic_c_asm
1. Local variable:

- Dynamically allocated on stack memory
- Temporarily available

2. Static variable:
- Usually located inside memory section
- Initialization occurs once and then the variable retains its value
- Only accessible from within the function

3. Global variable:
- Usually located inside memory section
- Static location, always accessible from everywhere

 



./basic_c_asm
int __cdecl main(int argc, char **argv)
{
  unsigned int v3; // eax
  int v4; // eax
  char number[33]; // [esp+8h] [ebp-28h] BYREF
  int i; // [esp+2Ch] [ebp-4h]

  strcpy(number, "dcb279fbe68e7bgg91f5941b689c6149");
  if ( argc >= 2 )
  {
    for ( i = 0; ; ++i )
    {
      j__strlen((unsigned __int8 *)number);
      if ( i >= v3 )
        break;
      --number[i];
    }
    j__strcmp((unsigned __int8 *)argv[1], (unsigned __int8 *)number);
    if ( v4 )
      j__printf("\nincorrect flag\n");
    else
      j__printf("\nCorrect flag\n");
    return 0;
  }
  else
  {
    j__printf("Usage: chall-1.exe <flag>\n");
    return 0;
  }
}

Steps:
1. Observe main function and understand how 

arguments are used
2. Readable strings are useful
3. Go function by function
4. Trace the logic flow



./basic_c_asm
int __cdecl main(int argc, char **argv)
{
  unsigned int v3; // eax
  int v4; // eax
  char number[33]; // [esp+8h] [ebp-28h] BYREF
  int i; // [esp+2Ch] [ebp-4h]

  strcpy(number, "dcb279fbe68e7bgg91f5941b689c6149");
  if ( argc >= 2 )
  {
    for ( i = 0; ; ++i )
    {
      j__strlen((unsigned __int8 *)number);
      if ( i >= v3 )
        break;
      --number[i];
    }
    j__strcmp((unsigned __int8 *)argv[1], (unsigned __int8 *)number);
    if ( v4 )
      j__printf("\nincorrect flag\n");
    else
      j__printf("\nCorrect flag\n");
    return 0;
  }
  else
  {
    j__printf("Usage: chall-1.exe <flag>\n");
    return 0;
  }
}



./basic_c_asm
int __cdecl main(int argc, char **argv)
{
  unsigned int v3; // eax
  int v4; // eax
  char number[33]; // [esp+8h] [ebp-28h] BYREF
  int i; // [esp+2Ch] [ebp-4h]

  strcpy(number, "dcb279fbe68e7bgg91f5941b689c6149");
  if ( argc >= 2 )
  {
    for ( i = 0; ; ++i )
    {
      j__strlen((unsigned __int8 *)number);
      if ( i >= v3 )
        break;
      --number[i];
    }
    j__strcmp((unsigned __int8 *)argv[1], (unsigned __int8 *)number);
    if ( v4 )
      j__printf("\nincorrect flag\n");
    else
      j__printf("\nCorrect flag\n");
    return 0;
  }
  else
  {
    j__printf("Usage: chall-1.exe <flag>\n");
    return 0;
  }
}

“.\chall-1.exe” “test”

argv[0] argv[1]



./basic_c_asm
int __cdecl main(int argc, char **argv)
{
  unsigned int v3; // eax
  int v4; // eax
  char number[33]; // [esp+8h] [ebp-28h] BYREF
  int i; // [esp+2Ch] [ebp-4h]

  strcpy(number, "dcb279fbe68e7bgg91f5941b689c6149");
  if ( argc >= 2 )
  {
    for ( i = 0; ; ++i )
    {
      j__strlen((unsigned __int8 *)number);
      if ( i >= v3 )
        break;
      --number[i];
    }
    j__strcmp((unsigned __int8 *)argv[1], (unsigned __int8 *)number);
    if ( v4 )
      j__printf("\nincorrect flag\n");
    else
      j__printf("\nCorrect flag\n");
    return 0;
  }
  else
  {
    j__printf("Usage: chall-1.exe <flag>\n");
    return 0;
  }
}

number is a variable that store 
“dcb279fbe68e7bgg91f5941b689c6149”

v4 stores return value of strcmp: -1 (less than 0), 0 
(equal) or 1 (greather than 0)



./basic_c_asm
int __cdecl main(int argc, char **argv)
{
  unsigned int v3; // eax
  int v4; // eax
  char number[33]; // [esp+8h] [ebp-28h] BYREF
  int i; // [esp+2Ch] [ebp-4h]

  strcpy(number, "dcb279fbe68e7bgg91f5941b689c6149");
  if ( argc >= 2 )
  {
    for ( i = 0; ; ++i )
    {
      j__strlen((unsigned __int8 *)number);
      if ( i >= v3 )
        break;
      --number[i];
    }
    j__strcmp((unsigned __int8 *)argv[1], (unsigned __int8 *)number);
    if ( v4 )
      j__printf("\nincorrect flag\n");
    else
      j__printf("\nCorrect flag\n");
    return 0;
  }
  else
  {
    j__printf("Usage: chall-1.exe <flag>\n");
    return 0;
  }
}

1. Address of “number” loads into ECX and used by 
strlen to calculate the length of string
2. The value will be stored in EAX (v3) after strlen 
function is executed
3. cmp with jnb is the compare loop counter
4. - - number[i] is ASCII decrement 

So in short, number will a new value that is decrement 
by ASCII value of 1

A -> 41 - 1 = 40 -> @ 
B -> 42 - 1 = 41 -> A
C -> 43 - 1 = 42 -> B



./basic_c_asm



./basic_c_asm

#include <stdio.h>
#include <string.h>

int main() {
    char str[] = "dcb279fbe68e7bgg91f5941b689c6149\n";
    int len = strlen(str);
    for(int i=0;i<=len;i++) {
        --str[i];
    }
    printf("%s\n",str);
    return 0;
}



./cracking_crackmes

We have look at console 
application, how about GUI ?



./cracking_crackmes

Every Windows program includes an entry-point function 
named either WinMain or wWinMain. The following code 
shows the signature for wWinMain:

int WINAPI wWinMain(HINSTANCE hInstance, HINSTANCE 
hPrevInstance, PWSTR pCmdLine, int nCmdShow);

How does the compiler know to invoke WinMain instead of the standard 
main function? What actually happens is that the Microsoft C runtime library 
(CRT) provides an implementation of main that calls WinMain.

The CRT does some more work inside main. For example, it calls any static 
initializers before WinMain.

https://learn.microsoft.com/en-us/windows/win32/learnwin32/win
main--the-application-entry-point

https://learn.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-point
https://learn.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-point


./cracking_crackmes

_main -> _WinMain -> _WindowProc

WindowProc is a callback function that 
handles input by the GUI interface.

It is only called when Windows system 
whenever events occur like mouse 
clicks and keyboard input

https://learn.microsoft.com/en-us/windo
ws/win32/api/winuser/nc-winuser-wndpr
oc

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nc-winuser-wndproc
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nc-winuser-wndproc
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nc-winuser-wndproc


./cracking_crackmes

OnCheckButtonClick function will 
contain function that perform the 
password checking. 

and we got checkPassword()
now reverse the checkPassword 
function



./cracking_crackmes

BOOL __cdecl checkPassword(int a1)
{
  int i; // [esp+Ch] [ebp-4h]

  for ( i = 0; aPassword1[i] && *(_BYTE *)(i + a1); ++i )
  {
    if ( aPassword1[i] - 1 != *(char *)(i + a1) )
      return 0;
  }
  return !aPassword1[i] && !*(_BYTE *)(i + a1);
}

Can you figure out how the input is checked?



./cracking_crackmes

PE vs. ELF
1. PE are more complex to parse compare to ELF which has more direct memory 
layout

2. ELF often keeps function names and metadata, even when stripped, PE files 
are usually stripped of symbols. Debug info (PDB files) is separate and rarely 
available.

3. PE has Import Address Tables (IAT) which requires a debugger to trace 

4. Calling conventions and ABI differences



                ELF         PE



Practise, practise and practise:

1. https://forum.tuts4you.com/files/categ
ory/30-challenge-of-reverse-engineer
ing/

2. https://crackmes.one/

Code your own crackmes, break it, try with 
different concepts like anti-debugger, 
obfuscation, encryption and packing. 

Also, trying with different programming 
languages like Python, Java, Golang and 
etc

Read this if you are keen to explore RE:
https://fullstackreverser.com/posts/Become-a-Full-Stack-Reve
rser/

./git_gud_at_it

https://forum.tuts4you.com/files/category/30-challenge-of-reverse-engineering/
https://forum.tuts4you.com/files/category/30-challenge-of-reverse-engineering/
https://forum.tuts4you.com/files/category/30-challenge-of-reverse-engineering/
https://crackmes.one/
https://fullstackreverser.com/posts/Become-a-Full-Stack-Reverser/
https://fullstackreverser.com/posts/Become-a-Full-Stack-Reverser/

