
CSLU IIUM
Reverse Engineering

0x251e



Table of contents:

Theory:
1. Introduction of x86

2. Compilation & translation

3. C and NASM on Linux

4. Bridging C code to assembly 

Hands-on Labs: https://github.com/shreethaar/CSLU-IIUM-RE-HandsOnSession 
1. C code review 

2. gdb debug 

3. crackme 

4. godbolt.org and dogbolt.org 

https://github.com/shreethaar/CSLU-IIUM-RE-HandsOnSession
http://godbolt.org
http://dogbolt.org


In order to understand x86 architecture, we should 
familiar with Von Neumann architecture:

1. Control Unit
2. Arithmetic Logic Unit (ALU)
3. Registers
4. Memory 
5. I/O devices 

Introduction to x86



What is the Control Unit:
- Direct and coordinate execution of 
instruction in CPU

- Receives instructions from main 
memory

- In 32-bit systems, register that handles 
the function of control unit is Extended 
Instruction Pointer (EIP)

Introduction to x86



What is the ALU: 

- perform all calculations and logic 
operations 

- works under direction of Control Unit

- Executes arithmetic, logic and 
comparison 

- Result of operation stored in registers or 
memory 

- In the form of assembly instruction such 
as XOR, ADD, CMP and etc

Introduction to x86



What is registers:

- small, fast storage inside CPU

- used during instruction execution

- provide quick access to frequently used 
values

Types of registers:

- Data register (EAX, EBX, ECX and EDX)

- Address register (ESI and EDI) 

- Control register (EIP, ESP and EBP)

Introduction to x86



What is the memory ?

- workspace where programs and data are 
stored while running

- when a program starts, it is loaded from 
disk into memory

- CPU fetch instruction from memory using 
Instruction Pointer 

- allow direct access to any address (random 
access memory)

Introduction to x86



Introduction to x86

What is the I/O devices:

- to communicate with peripherals

- send input to CPU or receive output 

- in Linux, programs interact with I/O device 
using system calls 



Compilation & translation

So how does applications is made and understand by CPU?

Take example of this calculator applications

1.  Programmers with it in a high level language 

2. Compiler translates it into Assembly code 

3. CPU execute it in binary (1s and 0s) 

A program you see on screen is the final product of many 
translation steps. 
It is from human-readable code to CPU-executable 
machine code.



Compilation & translation

What if we are given only the application 
without a single clue what is the source 
code is

This is the process of reverse engineering 
needed 

Key Takeway:
“Compilation is a one-way translation — 
Reverse Engineering is learning how to 
read it backward.” “hang pi taruq gear R, astu gostan, 

ape yg susah” - 0x251e



C and NASM in Linux
1. C language is human-readable which computer can’t execute directly 
2. When we compile C:
- Preprocessor expands macros such as #include, #define 
- Compiler converts C -> assembly (.s) 
- Assembler turns assembly -> machine code (.o) 
- Linker joins .o + libraries -> executables (a.out) 

3. NASM (Netwide Assembler), popular assembler for Linux

With C code, you compile with GCC compiler 
With Assembly code, you compile with NASM with required to link the object files



Bridging C code to assembly
A basic software/program contains:

● variable definition (char, int, long, 
array)

● if/else conditions 
● loops (while,for)
● calling functions 

Questions:
Based on the application on the right side, 
what are the possible variables and 
conditions ?



Bridging C code to assembly
Two possible variables: 

num1 -> holding the first value 

num2 -> holding the second value 

Conditions:

If 1: add
If 2: sub
If 3: mul
If 4: div

Questions:
how about more than 4 ???



#include <stdio.h> 

int main() { 
int num1, num2, result; 
int choice; 

printf("Enter two numbers: \n"); 
scanf("%d", &num1); 
scanf("%d", &num2); 

printf("Enter Choice\n"); 
printf("1 - Add\n"); 
printf("2 - Sub\n"); 
scanf("%d", &choice);

if (choice == 1) { 
result = num1 + num2; 
printf("Result: %d\n", result); 

} 

else if (choice == 2) { 
result = num1 - num2; 

printf("Result: %d\n", result); 
}

else { 
printf("Invalid choice\n"); 
} 

return 0;
}

Bridging C code to assembly



Bridging C code to assembly
Now we have to source code, to make it executable as a program, we need to 
compile it:

$ gcc -m32 calc.c -o calc



When we run the calc, how does hardware 
process the code ?
Computers only understand binary ( 1 and 
0) 

Here is when assembly translates high 
level source code to machine code for 
hardware to process 

To view the source code of the calc code:

$ gcc -m32 -S -masm=intel -O2 
-fno-asynchronous-unwind-tabl
es calc.c -o calc.s

Bridging C code to assembly



Bridging C code to assembly
push ebp
mov  ebp, esp
push esi
push ebx
call __x86.get_pc_thunk.bx
add  ebx, OFFSET 
FLAT:_GLOBAL_OFFSET_TABLE_
sub  esp, 40
mov  eax, DWORD PTR gs:20
mov  DWORD PTR -28[ebp], eax

This part of assembly is prologue:

EBP -> Base Pointer
ESP -> Stack Pointer 
SUB -> Subtract 40 bytes from ESP 

Purpose is to:
- Make space to store local variables
- Save caller address 

Why sub esp, 40 :
- num1 is an int, 4 bytes
- num2 is an int, 4 bytes
- choice is an int, 4 bytes 
- the remaining is for stack operation later 

usage 

 



Bridging C code to assembly
What is a stack ?

- a region of memory used for 
temporary storage 

- grows downwards 

- each function has its own 
stack frame

- local variables 



lea eax, .LC0@GOTOFF[ebx]   
push eax
call puts@PLT

lea eax, -40[ebp]           
push eax
push esi
call __isoc23_scanf@PLT

lea eax, -36[ebp] 
push eax 
push esi 
call __isoc23_scanf@PLT

    

CALL -> to execute another function puts  
[ebx] is referring to the address that is in EBX, then calls 
puts to print out string

[ebp-40] from stack where the address of num1 will be 
stored

CALL -> to execute C library function scanf

[ebp-36] from stack where the address of num2 will be 
stored 

CALL -> to execute C library function scanf

Bridging C code to assembly



Add operations:
1. First number move into EAX
2. Add second number and store in EAX
3. Push EAX and then call printf

JMP .L7 is to print result

Bridging C code to assembly
.L9:

pushedx
pushedx
mov eax, DWORD PTR -36[ebp]
add eax, DWORD PTR -40[ebp]
jmp .L7

    



Print result operations:
Result from operations stored in EAX push 
into stack

Next push is the format string, then we call 
printf 

In C code, printf contain two arguments

printf("Result: %d\n", result);

Bridging C code to assembly
.L7:

pusheax
lea eax, .LC5@GOTOFF[ebx]
pusheax
callprintf@PLT
add esp, 16
jmp .L3



Would someone like to give a try to explain 
this ?

Grab some free stickers 

.L10:
pusheax
pusheax
mov eax, DWORD PTR -40[ebp]
sub eax, DWORD PTR -36[ebp]

    

Bridging C code to assembly



Compare value for calculation operations

1. cmp eax 1 jumps to addition
2. cmp eax 2 jumps to subtraction 

JE is jump equals 

So what is LEA,PUSH and CALL puts does ?

call__isoc23_scanf@PLT
mov eax, DWORD PTR -32[ebp]
add esp, 16
cmp eax, 1
je .L9
cmp eax, 2
je .L10
sub esp, 12
lea eax, .LC6@GOTOFF[ebx]
pusheax
callputs@PLT
add esp, 16

    

Bridging C code to assembly



Here is a simple ascii checker:

1. Take a single character as input
2. Display input character (%c) 
3. Display in ASCII value (%d)
4. Display in hexadecimal value (0%x%x)
5. Identify type of character input

To compile and debug this:
$ gcc -m32 -g ascii-check.c -o check 

#include <stdio.h>

int main() {
    char ch;
    
    printf("Enter a character: ");
    scanf("%c", &ch);
    printf("\nCharacter: %c\n", ch);
    printf("ASCII value: %d\n", ch);
    printf("Hexadecimal: 0x%X\n", ch);
    if (ch >= 'A' && ch <= 'Z') {
        printf("Type: Uppercase letter\n");
    }
    else if (ch >= 'a' && ch <= 'z') {
        printf("Type: Lowercase letter\n");
    }
    else if (ch >= '0' && ch <= '9') {
        printf("Type: Digit\n");
    }
    else if (ch == ' ') {
        printf("Type: Space\n");
    }
    else {
        printf("Type: Special character\n");
    }
    
    return 0;
}

    

C Code Review



C Code Review

Run:

$ pwndbg ./ascii-check

Within gdb/pwndbg:
$ info functions 

This will list the functions in the 
binary



C Code Review

$ break main 

This set a breakpoint at main

Think breakpoint as a brake, it will pause the 
program until the address 0x116d

and next hit run:

$ run



C Code Review



C Code Review

This shows the breakpoint that we set
1. Breakpoint 1 means the first breakpoint
2. Debugger is paused at the address 0x000055555555516d



C Code Review

This is the registers section, always pay close attention the value contains

Sometimes it contains address 
Sometimes it contains values 

Depends on the contexts, which we need to understand assembly first



C Code Review

Stack frame grows downwards

Everytime when we see PUSH and POP,
The stack INCREASE and DECREASE in address value



Hands-on Session

Lets debug and try some crackme 

No more slides after this, promised maximum slides is 30 

Cheatsheet for gdb:
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

