
CTF Workshop
Digital Forensic

 File Forensic1

 Office File Forensic3

 Image Forensic2

./forensic_intro
Forensic is the activity of recovering
digital trail left on device or network.

Many methods to find data which was
deleted, not stored, or worse covertly
recorded.

./forensic_intro

./forensic_intro
Usually some similar themes:
● Look for little weird tricks

- Can a zip file appended to JPEG ?
- Can a file both a PDF and an exe ?

● Application of off-the-shelf software
- Oh it’s a dump of virtual memory
- There’s a Python script somewhere to parses dump of virtual memory to

rebuild all process memory from PTEs

● File Format Identification
- Magic bytes, header data and trailer data (89 50 4E 47)
- Corrupted file hex signature

● Filesystem (Disk Image), PCAP, Memory Dump, Syslog and etc

./forensic_archive_files
● CTF Challenges usually contained in a zip, 7z, rar, tar or tgz file
● Goal: To extract a file from the archive and file the flag from a file that is embedded or hidden

1. Zip file
● $ unzip
● $ zipdetails -v
● $ zipinfo

2. RAR file
● $ unrar x

3. 7z file
● $ 7z x

4. tar.gz file
● $ tar xzvf

./forensic_archive_files

5. XZ file
● $ xz -d

6. bz2 file
● $ bzip2 -d

7. gzip file
● $ gzip -d

./forensic_file_analysis
What is File Forensic:
● The practise of analyzing digital files to recover evidence or understand file properties and

contents

Purpose:

● Recover deleted or hidden information
● Understand file creation and modification

details
● Identify malicious software or

unauthorized changes

● Files can sometimes come without an extension, or with incorrect ones.
● File extensions aren’t reliable alone; file signatures, or magic numbers, accurately identify file

types for consistent and correct data parsing

./forensic_file_analysis

./forensic_file_analysis
Tools for file analysis:

1. $ exiftool
● Extract all metadata of a digital file

2. $ ghex (for advanced use $ xxd)
● View, edit data from any file
● Also used by kids who cheat at computer

games, by adding score or lives to saved
games.

3. $ binwalk
● File extraction (embedded file within the

main file)
● Signature Scanning (Magic Hex)
● To extract $ dd if=<input> of=<input>

bs=<block size> skip=<read after certain
bytes>

./forensic_file_analysis
File Signatures and Magic Hex
● Know the Magic Hex Signature (Header, Trailer, Body)
● Magic hex are typically 2-4 long, found at the beginning of a file
● https://gist.github.com/leommoore/f9e57ba2aa4bf197ebc5
● https://www.garykessler.net/library/file_sigs.html
● https://asecuritysite.com/forensics/png?file=%2Flog%2Fbasn0g01.png

Example: PNG Image

Header: 89 50 4E 47 (.PNG)
Trailer: AE 42 60 82 (IEND)

For Scanning Signature Analysis:
[PNG file, sig: 89504E470D0A1A0A] → File type identifier

https://gist.github.com/leommoore/f9e57ba2aa4bf197ebc5
https://www.garykessler.net/library/file_sigs.html
https://asecuritysite.com/forensics/png?file=%2Flog%2Fbasn0g01.png

./forensic_steganography

The art of hiding data in images or audio
Popular CTF challenge and it might be a separate category by itself
Common Methods:
● LSB (Least Significant Bit)
● Discrete Fourier Transform (DFT)
● Palette-Based Technique

./forensic_steganography

Understanding How LSB Works:
● Each image has pixels with 3 channel of RGB
● Each channel needs 1 byte (8 bits of 1’s and 0’s)

If we change a single bit of the pixel, the last one (LSB),
the result doesn't appeal to be very different.

So message are decoded in binary from ASCII:
Example: Letter ‘A’ -> ASCII value 97 -> 01100001
First pixel : 0 1 1; Second pixel: 0 0 0; Third pixel: 0 1

./forensic_steganography

./forensic_steganography

./forensic_steganography
Common tools for steganography challenge:
● Strings
● File
● Exiftool
● Binwalk
● Zsteg
● Steghide
● Stegsolve

./forensic_office_files

● OLE -> Object Linking and Embedding
● Allows to construct objects, which can linked or

embedded within other documents or
applications

● Acts like mini file system (compound document)
● Newer .docx, .xlsx are zipped XML format

Threats in Office Files
● Malicious macros (VBA)
● Embedded executables
● Suspicious links
● Auto-execution triggers

./forensic_office_files

● Modern office files are XML-based archive file
format

● Two methods to extract the contents:
○ unzip
○ oletools

● Crucial to understand the metadata structure of
Office files

● Example:
○ docProps/core.xml is for file properties
○ word/styles.xml for formatting details

./forensic_office_files
Understand OOXML Structure

1. Key Metadata Files
-> Located in the docProps/ directory:
 - core.xml - metadata
 - app.xml - stores info like number of pages
These metadata generated by Office, not OS

2. Two Types of Metadata
-> Internal (OOXML): From core.xml
-> External (File container): From filesystem

It is used to uncover authorship, editing
history, or potential tampering

./forensic_office_files

./forensic_office_files
VBA Macros
● Often used for malware which provide easy way to execute VB script by opening the file
● Macro-enabled files always have an ‘m’ at the end of the extension

● OleVBA is a tool to detect and analyze VBA macros and able to find suspicious code and
decode strings to allow deeper analysis

./forensic_office_files

./forensic_office_files

1. Auto-Execute Functions
● Workbook_Open(): Runs automatically when

file is open
● TextBox1_Change: Triggers when a specific

TextBox is changed

2. Suspicious Element
● Environment variable access
● File operations
● Binary file operations (exe, dll)
● Shell command execution
● CreateObject capabilities
● Application execution
● Hex string encoding (possible obfuscation)

./forensic_office_files
Analyze VBA from Office files

1. oleid
● Static analysis, summary of security-relevant
● Detect VBA macros
● Exploit techniques used

$ oleid example.doc

2. olevba
● Extracts/Analyze VBA script macros
● Embedded OLE objects
● Useful for analyzing documents from phishing emails

$ olevba example.doc

Example Malicious Document Analysis Challenge:
https://0x251e-challenge.github.io/challenges/posts/total-wreck-spreadsheets/

https://0x251e-challenge.github.io/challenges/posts/total-wreck-spreadsheets/

./forensic_office_files
JS Embedding in PDF Files

Knowing PDF Structure and JS Embedding:
● Header (%PDF-1.4) -> indicates pdf version
● Body -> metadata objects, page content, interactive elements
● Cross-Reference Table (xref) -> Maps objects to their locations within the file
● Trailer (%%EOF)

Possible ways embedding JS into PDF
● Catalog Object: OpenAction will execute JS script when PDF is opened
● Annotations: Button or Links can trigger JS which exploit buffer overflow or XSS

Tools:
● PDFiD: Detects JS elements, embedded files, auto-actions
● pdf-parser.py: Analyze PDF objects to find JS payloads

./forensic_office_files
JS Embedding in PDF Files

./forensic_office_files
PDF Element Actions:

● OpenAction /AA - the function of this element is to
carry out an action for e.g. execute a script

● /JavaScript /JS - link to the JavaScript that will run
when the PDF is opened

● /Names - names of files that will likely be referred
to by the PDF itself

● /EmbeddedFile - shows the other files embedded
within the PDF file itself e.g., scripts

● /URI /SubmitForm - Links to other URLs on the
internet e.g., possible link to a 2nd stage
payload/additional tools for malware to run

● /Launch - Similar to OpenAction, can be used to run
embedded scripts within the PDF file itself or run
new additional files that have been downloaded by
the PDF

./forensic_office_files
Example:

If the PDF was opened with a web browser, it will show a alert message after opening it.

Use peepdf to analyze the object
$ peepdf -i example.pdf

./real_world_forensic

CTF forensics may seem like games, they build the mindset and skills needed
for real investigations.

Out in the real world, you won’t just chase flags

you’ll uncover truths, recover evidence, and solve incidents that matter.

Also, we just only covered like less than 5% of the whole digital forensic.

THE END…WEEEEEE
And Happy hacking 🚩🚩

KEEP TRYING AND GIT GUD AT IT

